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Abstract. We study the Yangian symmetry of the multicomponent quantum nonlinear
Schr̈odinger hierarchy in the framework of the quantum inverse scattering method. We give an
explicit realization of the Yangian generators in terms of the deformed oscillators algebra which
naturally occurs in this framework.

1. Introduction

An increasing number of integrable systems with internal degrees of freedom have been
shown to exhibit a Yangian symmetry. One of the earliest examples of this is perhaps the
Haldane–Shastry spin chain [1] and the spin generalization of the Calogero–Sutherland model
investigated in [2].

In the realm of integrable systems the quantum nonlinear Schrödinger (NLS) model
distinguishes itself by being one of the most studied system and its simplest version played an
important role in the development of the quantum inverse scattering method (QISM). Recently,
the authors of [3] considered the quantum NLS model with spin1

2 fermions and repulsive
interaction on the line and have unravelled the presence of a Yangian symmetryY (sl(2)).

In this paper we consider the most general case of the quantum NLS model withN -
component bosons or fermions and prove that the Yangian symmetry isY (sl(N)). In addition
we provide an explicit realization of the Yangian generators using the algebra of creation and
annihilation operators for scattering states that is an essential part of the QISM, also known as
the Zamolodchikov–Faddeev (ZF) algebra [4]. This approach makes it clear that the Yangian
is actually a symmetry of the whole quantum integrable hierarchy whose lowest instance is
the NLS model. As a by-product, we also obtain all the solutions to the equations of motion
of the quantum NLS hierarchy.

The structure of the paper is as follows. In section 2 we summarize the QISM applied
to the NLS model. Section 3 in devoted to the study of the Yangian symmetry of the NLS
model. In section 4 we outline the construction of the Yangian generators, as well as the
higher Hamiltonians of the NLS hierarchy, in terms of creation and annihilation operators of
the ZF algebra, with the technical details being gathered in the appendices. Next we present
a connection between the action of the Yangian algebra restricted to the subspaces of fixed
particle number and a class of finiteW -algebras. We conclude with possible extensions of this
work.

0305-4470/99/325885+16$30.00 © 1999 IOP Publishing Ltd 5885
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2. The multicomponent NLS model

We consider theN -components quantum NLS model with bosons or fermions and repulsive
coupling. We first collect a few known results from the QISM applied to the model, most of
which can be found in [5,6] with more details.

The Hamiltonian of the NLS model is

H =
∫

dx

(
∂φ†i

∂x

∂φi

∂x
− ρgφ†iφ†jφiφj

)
(2.1)

where the fields operators satisfy the equal time canonical commutation relations

[φi(x), φ
†j (y)]ρ = δji δ(x − y) [φi(x), φj (y)]ρ = [φ†i (x), φ†j (y)]ρ = 0.

The conventions are thatρ = −1 for bosons,ρ = 1 for fermions and [, ]ρ stands, respectively,
for the commutator or anti-commutator. Latin indices run from 1 toN , whereas Greek indices
run from 1 toN + 1. Repeated indices are summed over their appropriate range.

The linear operator of the QISM is

L(x|λ) = i
λ

2
6 +�(x) with �(x) = i

√
g(φj (x)Ej,N+1− φ†j (x)EN+1,j ). (2.2)

In this equationEαβ is the standard(N + 1) × (N + 1) matrix (Eαβ)µν = δαµδβν and6 is a
diagonal matrix6 = IN+1− 2EN+1,N+1, whereIN+1 is the identity matrix.

The quantum monodromy matrixT (x, y|λ) is defined by the equations

∂

∂x
T (x, y|λ) =: L(x|λ)T (x, y|λ) : T (x, y|λ)|x=y = IN+1 (2.3)

where : : denotes the usual normal order for the field operatorsφ(x) andφ†(x). The infinite
volume limit is a delicate issue in the QISM [6]. The infinite volume monodromy matrixT (λ)

is formally defined by

T (λ) = lim
x→∞,y→−∞E(−x|λ)T (x, y|λ)E(y|λ)

whereE(x|λ) = exp(iλx6/2). Using the implicit representation forT (x, y|λ),

T (x, y|λ) = E(x − y|λ) +
∫ x

y

dx1E(x − x1|λ) : �(x1)T (x1, y|λ) :

the monodromy matrixT (λ) can be formally computed through an iterative procedure and is
expressed as

T (λ) = IN+1 +
∞∑
n=1

∫ ∞
−∞

dnx θ(x1 > · · · > xn)E

(
2

n∑
i=1

(−)ixi |λ
)

: �(x1) . . . �(xn) : . (2.4)

The commutation relations for infinite volume are encoded in the exchange relation

R+
ρ(λ− µ) T (λ)⊗

ρ
T (µ) = T (µ)⊗

ρ
T (λ)R−ρ (λ− µ) (2.5)

with theR-matrices

R±ρ (µ) =
iρg

µ + iρg
pv

1

µ
Ejj ⊗ Ekk +

1

µ + iρg
Eαj ⊗ Ejα +

µ− iρg

(µ + i0)2
Ej,N+1⊗ EN+1,j

−ρ(µ− ig)

µ + iρg
pv

1

µ
EN+1,N+1⊗ EN+1,N+1

±iπδ(µ)(Ejj ⊗ EN+1,N+1− EN+1,N+1⊗ Ejj ). (2.6)
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The term i0 is a consequence of the principal value regularization adopted whenµ goes to
zero, according to the relation (in the sense of distributions)

pv
1

µ
= 1

µ± i0
± iπδ(µ).

It is convenient to rename some elements of the monodromy matrix such asD(λ) =
TN+1,N+1(λ) andbj (λ) = TN+1,j (λ). Further examination of some components of (2.5) yields
the following relations:

D(λ)D(µ) = D(µ)D(λ) (2.7)

D(λ)bj (µ) = λ− µ + ig

λ− µ + i0
bj (µ)D(λ) (2.8)

bj (λ)bk(µ) = −ρ(λ− µ)
λ− µ− ig

bk(µ)bj (λ)− ig

λ− µ− ig
bj (µ)bk(λ). (2.9)

The matrix elementD(λ) serves as a generating operator-function for the commuting integrals
of motion of the NLS model. This is most easily seen by performing an asymptotic expansion
for largeλ in the solution (2.4), whereby one gets

D(λ) = 1 +
ig

λ
N̂ +

ig

λ2

(
P + i

g

2
N̂(N̂ − 1)

)
+

ig

λ3

(
H + ig(N̂ − 1)P − g

2

6
N̂(N̂ − 1)(N̂ − 2)

)
+ O

(
1

λ4

)
(2.10)

with

N̂ =
∫

dx φ†jφj P = −i
∫

dx φ†j ∂φj

andH is given in (2.1). Consequently, equation (2.7) implies that these integrals of motion
are all in involution.

In the multicomponent NLS model the commutation relations amongstbj (λ) and their
adjoint have to be deduced from another type of exchange relation (see [5] for details).
Moreover, these operators hardly make sense as operators on the Hilbert space [6] and it
is necessary to consider the scattering states operators instead

a†j (λ) = i√
g
bj (λ)D−1(λ) (2.11)

and their adjointak(λ). Then the commutation relations amongsta(λ) anda†(λ) are nicely
encoded in the form of a ZF algebra [4] as (a sort of deformed oscillator algebra):

aj (λ)ak(µ) = Rnmkj (µ− λ)am(µ)an(λ) (2.12)

a†j (λ)a†k(µ) = a†m(µ)a†n(λ)Rjkmn(µ− λ) (2.13)

aj (λ)a
†k(µ) = a†m(µ)Rknjm(λ− µ)an(λ) + δkj δ(λ− µ) (2.14)

where theR-matrix given by

Rknjm(µ) =
1

µ + ig
(−ρµδkmδnj + igδkj δ

n
m) (2.15)

is the two-body scattering matrix of theN -component NLS model.
The operatorsa†(λ) anda(λ) play the role of creation and annihilation operators and

as such can be used to build a Fock space through their action on the vacuum. Owing to
(2.8) these states are simultaneous eigenstates of the conserved quantities. Actually, the set
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of (asymptotic scattering) states
∏n
i=1 a

†i (λi)|0〉 for all n is dense in the Hilbert space of the
NLS model [6,7]. This property will be useful later on.

The original field operatorφk(x) can be recovered from the knowledge of the scattering
data. This is achieved by solving a system of quantum Gel’fand–Levitan equations, whose
result is a quantum version of the Rosales expression [8,9] (given here fort = 0):

φk(x) =
∞∑
n=0

(−g)n
∫

dnν dn+1µ

(2π)2n+1
a†i1(ν1) . . . a

†in (νn)ain(µn) . . . ai1(µ1)ak(µ0)

× eiµ0x
∏n
l=1 ei(µl−νl )x∏n

l=1(νl − µl−1 + iε)(νl − µl + iε)
. (2.16)

3. Yangian algebra in NLS

In this section we show that the NLS model contains an infinite set of conserved charges
having the structure of a Yangian algebra. There are several equivalent definitions of the
YangianY (sl(N)) and we present two of them in appendix A.

The Yangian symmetry of the NLS model already manifests itself in the exchange relation
(2.5). Indeed, denoting bỹT (λ) theN × N submatrix ofT (λ), T̃ (λ) = Tij (λ)Eij , and
examining the appropriate components of (2.5), one deduces the following relations:

R̃(λ− µ)T̃ (λ)⊗ T̃ (µ) = T̃ (µ)⊗ T̃ (λ)R̃(λ− µ) (3.1)

with yet anotherR-matrix

R̃(λ− µ) = (λ− µ)Ejk ⊗ Ekj + iρgIN ⊗ IN . (3.2)

This coincides precisely with the defining relation of the YangianY (gl(N)).
The fact that the Yangian algebra commutes with the Hamiltonian of the NLS model is a

consequence of the exchange relation as well, since one extracts from (2.5) that

[T̃ij (λ),D(µ)] = 0 (3.3)

and the Hamiltonian is just one of the conserved quantities in the asymptotic expansion (2.10).
It is of some interest to obtain an explicit representation of the Yangian generators in terms

of the field operatorsφi(x). This is achieved with the help of the iterative solution (2.4) of the
monodromy matrixT (λ), and by looking at its asymptotic expansion for largeλ one finds that

T̃jk(λ) = δjk +
iρg

λ

∫
dx φ†k(x)φj (x) +

ρg

λ2

(∫
dx φ†k(x)∂φj (x)

+g
∫

d2x θ(x1 > x2)φ
†n(x1)φ

†k(x2)φj (x1)φn(x2)

)
+ O

(
1

λ3

)
(3.4)

≡ δjk + iρg
∞∑
n=0

T̃
(n)
jk

λn+1
. (3.5)

In particular, this shows that in this model the formal series expansion of the Yangian generators
(see (A.2)) is to be understood as an asymptotic expansion for largeλ.

The most important relations for our purpose are the commutators of the Yangian
generatorsT̃ (n)j l with the creation operatorsa†k(µ). Using the exchange relation (2.5),
definition (2.11) and the symmetry property (3.3) one finds that

[T̃j l(λ), a
†k(µ)] = iρg

λ− µ− i0
a†l(µ)T̃jk(λ) (3.6)
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which, upon expanding in 1/λ, yields

[T̃ (0)j l , a
†k(µ)] = a†l(µ)δjk,

[T̃ (1)j l , a
†k(µ)] = µa†l(µ)δjk + iρga†l(µ)T̃

(0)
jk .

(3.7)

In the next section we need a more convenient basis ofY (sl(N)) (see appendix A). It
is also convenient to deal with self-adjoint generators for the Yangian algebra. It turns out
that these two requirements can be fulfilled in a single operation. Let us denote byT̃ (λ)‡ the
Hermitian conjugate of theN ×N matrix T̃ (λ) obtained by transposing the matrix and taking
the adjoint of its entries (which are operators in a Hilbert space), namely

T̃ (λ)‡ = IN − iρg
∞∑
n=0

T̃
(n)†
jk Ekj

λn+1
. (3.8)

Its anti-Hermitian part is simply

1

2
(T (λ)− T (λ)‡) = iρg

∞∑
n=0

1

λn+1

1

2
(T̃

(n)
jk + T̃ (n)†kj )Ejk ≡ iρgU(λ) (3.9)

whereU(λ) = U(λ)‡ is now Hermitian. As such, it can be expanded as

U(λ) =
∞∑
n=0

U
(n)
jk Ejk

λn+1
=
∞∑
n=0

∑N2−1
a=1 Q̃a

nta + Q̃0
nIN

λn+1
(3.10)

whereQ̃a
n = Q̃a†

n are self-adjoint generators. The matricesta = (ta)∗T are in the fundamental
representation ofsu(N) and normalized to

[ta, tb] = if cabtc ηab = tr(tatb).

Therefore, we have that

Q̃a
n = tr(U(n)ta) = U(n)

jk (t
a)kj . (3.11)

In theQ̃a
n basis, only then = 0, 1 grades are necessary and from (3.4) we find that

U
(0)
jk = T̃ (0)jk

U
(1)
jk = T̃ (1)jk −

iρg

2
T̃
(0)
lk T̃

(0)
j l +

iρgN

2
T̃
(0)
jk .

(3.12)

The commutation relations of̃Qa
n anda†k(µ) are then readily computed using (3.7), (3.11) and

(3.12)

[Q̃a
0, a

†k(µ)] = (a†(µ)ta)k (3.13)

[Q̃a
1, a

†k(µ)] = µ (a†(µ)ta)k − ρg
2
f abc(a

†(µ)tc)kQ̃b
0. (3.14)

The operatorsQ̃a
0,1 generates the YangianY (sl(N)) and the operators̃Q0

n are related to
its centre. They are also connected in some intricate way to the integrals of motion.

It is instructive to study the type of Yangian representations that appear in the Hilbert
space of the NLS model. The vacuum is invariant under the action ofQ̃a

0,1 and the one-particle
statea†k(µ)|0〉 transforms as an evaluation representation in the fundamental representation
of sl(N) [10], denoted byV (µ), since

Q̃a
0a

†k(µ)|0〉 = (ta)j ka†j (µ)|0〉
Q̃a

1a
†k(µ)|0〉 = µ(ta)j ka†j (µ)|0〉.
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The two-particle state,a†k1(µ1)a
†k2(µ2)|0〉, transforms as a tensor product of two such

representations

Q̃a
0a

†k1(µ1)a
†k2(µ2)|0〉 = ((ta)j1

k1δ
k2
j2

+ δk1
j1
(ta)j2

k2)a†j1(µ1)a
†j2(µ2)|0〉

Q̃a
1a

†k1(µ1)a
†k2(µ2)|0〉 =

(
µ1(t

a)j1

k1δ
k2
j2

+µ2δ
k1
j1
(ta)j2

k2 (3.15)

−ρg
2
f abc(t

c)j1

k1(tb)j2

k2

)
a†j1(µ1)a

†j2(µ2)|0〉.

In particular, the second term on the right-hand side of (3.14) ensures that the action ofQ̃a
1 on

the tensor product is consistent with the comultiplication of the Yangian

1(Q̃a
0) = Q̃a

0 ⊗ 1 + 1⊗ Q̃a
0

1(Q̃a
1) = Q̃a

1 ⊗ 1 + 1⊗ Q̃a
1 −

ρg

2
f abcQ̃

c
0⊗ Q̃b

0.

Therefore,n-particle states will carry ann-fold tensor product ofV (µi) representations.

4. Yangian generators and deformed oscillators

In view of formulae (2.16) and (3.4), it is clear that trying to reconstruct the Yangian generators
(in term of oscillators) by direct calculation is a difficult task. Instead we define two operators
Qa

0 andQa
1 that have the same commutation relations witha†(µ) as in (3.13) and (3.14).

Therefore, their action on the Fock space spanned by thea†(µ) will coincide with that ofQ̃a
0,1

and, as this Fock space is dense in the Hilbert space of the NLS model, we shall identify these
operators. All the other Yangian generators are built from these two sets of elements.

In order to simplify the presentation, we adopt a more compact notation for the ZF algebra.
We drop the explicit mention of the indicesi, j and the momentaµi , and instead introduce a
new index referring to anN -dimensional auxiliary space. More explicitly

a1 ≡ ai(µ1)e
i
1

whereei1 is some basis of theN -dimensional auxiliary space labelled by 1. For instance, the
R-matrix (2.15) reads

R12 ≡ R12(µ1− µ2) = 1

µ1− µ2 + ig
(−ρ(µ1− µ2)1⊗ 1 + igP12) (4.1)

where P12 is the permutation operator in the auxiliary spaces. The inverse ofR12 is
R21 = R21(µ2 − µ1). With this notation, the ZF algebra relations read

a1a2 = R21a2a1

a
†
1a

†
2 = a†

2a
†
1 R21

a1a
†
2 = a†

2R12a1 + δ12.

(4.2)

We also rename the operators we are looking for asJ a = Qa
0 andSa = Qa

1. Thus (3.13)
and (3.14), and their conjugate, translate to

[J a, a†
0] = a†

0t
a
0 (4.3)

[J a, a0] = −ta0a0 (4.4)

[Sa, a†
0] = µ0a

†
0t
a
0 +

ρg

2
f abca

†
0t
b
0J

c (4.5)

[Sa, a0] = −µ0t
a
0a0 +

ρg

2
f abcJ

btc0a0. (4.6)
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Hereta0 means that thesu(N) matrix ta is acting in the auxiliary space labelled by 0.
We first construct the operatorJ a. The idea is to build it recursively in such a way that

relations (4.3), (4.4) are fulfilled. The expansion parameter is not the coupling constantg but
rather the number of oscillators. More precisely, we start with the expression

J a =
∞∑
n=1

(−)n+1

n!
J a(n) =

∞∑
n=1

(−)n+1

n!
a

†
1...nT

a
1...nan...1 (4.7)

wherean...1 = an(µn) . . . a2(µ2)a1(µ1) and the integration onµ1, µ2, . . . , µn is implied inJ a.
We then determine the tensorsT a1...n recursively. The details of the calculation are relegated in
appendix B, and as a result we find that

T a1...n =
n∑
j=1

αnj t
a
j with αnj = (−)j−1

(
n− 1
j − 1

)
. (4.8)

These generators also verify

[J a, J b] = if abc J
c. (4.9)

They form thesl(N) subalgebra ofY (sl(N)).
We then look for operatorsSa of a similar form

Sa =
∞∑
n=1

(−)n+1

n!
Sa(n) =

∞∑
n=1

(−)n+1

n!
a

†
1...nT̃

a
1...nan...1 (4.10)

satisfying (4.5), (4.6). In this case, the procedure is simpler sinceSa lives in the adjoint
representation of the subalgebra generated byJ a. This implies that

Sa = − i

c2
f abc[S

b, J c] (4.11)

wherec2 is, as usual, the second Casimir in the adjoint representation,c2δ
b
a = facdf bcd . Using

the explicit expression (4.7) forJ a and imposing thatSa satisfies (4.5), (4.6) enables us to
compute the right-hand side of (4.11) and to determine the tensorsT̃ a1...n.

As anticipated from (4.5) the tensors depend on the momenta and their expression is (see
appendix C):

T̃ a1...n =
n∑
j=1

αnj

(
µj t

a
j +

ρg

2
f abc

j−1∑
i=1

tbi t
c
j

)
. (4.12)

Therefore, expressions (4.7) and (4.10) provide a realization of the Yangian generators in terms
of the ZF algebra.

A similar procedure can be applied to the integrals of motion (or higher Hamiltonians)
of the NLS model. The lowest HamiltonianŝN,P,H are explicitly known, and from (2.8),
(2.10) and (2.11) we find that

[N̂, a†
0] = a†

0

[P, a†
0] = µ0a

†
0

[H, a†
0] = µ2

0a
†
0.

Let us now define the infinite set of commuting operatorsÎn, n > 0 by

În =
∫

dµ1µ
n
1a

†
1a1 (4.13)

which enjoy the following commutation relations:

[În, a
†
0] = µn0a†

0

[În, a0] = −µn0a0.
(4.14)
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This implies that acting on anm-particle state

Îna
†
1 . . . a

†
m|0〉 =

( m∑
j=1

µnj

)
a

†
1 . . . a

†
m|0〉 (4.15)

which is precisely the definition of the higher Hamiltonians in the quantum NLS model [6].
According to (4.14) the lowest ones are obviously identified with

N̂ = Î0 P = Î1 H = Î2.
Moreover, we can show thatD(λ) is a generating operator-function for the integrals of

motion, that is, it can be expressed entirely in terms of theÎn operators. Indeed we can prove
that

D(λ) = exp(d(λ)) where d(λ) =
∞∑
n=0

dn

λn+1
(4.16)

and

dn = ig
n∑
j=0

(−ig)n−j

n + 1

(
n + 1
j

)
Îj . (4.17)

As theÎn commute with each other and satisfy (4.14), it is straightforward to show that

exp(d(λ))a†
0 exp(−d(λ)) =

(
1 +

ig

λ− µ0)

)
a

†
0

which is precisely the relation betweenD(λ) anda†
0 as deduced from (2.8). This proves the

assertion (4.16).
Owing to the explicit expressions (4.7) and (4.10), it is very easy to check that the operators

În commute withJ a andSa. As J a, Sa generate the Yangian algebra, then obviously theÎn
commute with the whole Yangian algebra. This is just another way of expressing the content
of (3.3). It also means that the Yangian is a symmetry of all the quantum systems defined with
the help of the higher Hamiltonians.

As usual, the time evolution of the quantum fieldφk(x) of equation (2.16) is given by
the conjugation due to the NLS Hamiltonian (2.1) which is nothing butÎ2. According to
the commutation relations (4.14), this amounts to multiplying in (2.16) the creation operators
a†(ν) by eiν2t and the annihilation operatorsa(µ) by e−iµ2t . Although expression (2.16) was
originally obtained as the solution to the NLS equation of motion, it also provides the solution to
the higher flows of the hierarchy. Simply, thetn-time evolution is now induced by a conjugation
by exp(iÎntn). Consequently, the phases multiplying the creation and annihilation operators
are, respectively, eiν

ntn and e−iµntn . It is remarkable to obtain the solutions to all the equations
of motion of the hierarchy in such an easy way.

5. Connection with finiteW -algebras

It has already been shown that there is a strong connection between YangiansY (sl(N)) and
finite W algebras [11]. In this section we show that the NLS hierarchy offers a natural
framework to illustrate this relation.

For such a purpose, we focus on the Fock spaceF spanned by theai†(µ) and detail its
structure. Let us recall that thep-particle subspaceFp(µ1, . . . , µp) with fixed momenta
(µ1, . . . , µp) is a tensor product ofp evaluation representations⊗pi=1V (µi), all in the
fundamental representation ofsu(N). The p-particles subspaceFp is just the span over
all momentaµi .
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It is straightforward to see that onFp the Yangian generatorst (n)ij with n > p act as
zero operators. We thus have a representation of a truncated Yangian, which is known to be
isomorphic, at the algebra level, to a finiteW(gl(Np),N · sl(p)) algebra [12]. Thus on each
p-particle subspace the Yangian acts as aW(gl(Np),N · sl(p)) algebra. This is another nice
application of finiteW algebras (more examples can be found in [13] and references therein).

Let us illustrate this point in the simplest case, namelyp = 2 andN = 2. Consequently,
the only independent Yangian generators areQa

0,Qa
1 and their action onF2 is given in (3.15).

Let us denote their representation onF2 by J a andSa, respectively. Up to an innocuous shift
Sa → Sa − 1

2PJ
a, the full set of commutation relations satisfied by these operators is

[J a, J b] = if abc J
c

[J a, Sb] = if abc S
c

[Sa, Sb] = if abc

(
1

2
H − 1

4
P 2 − g2 c2

8N

)
J c.

(5.1)

One recognizes here the relations of theW -algebraW(gl(4), 2 · sl(2)).
W(gl(4), 2·sl(2))andW(sl(4), 2·sl(2))algebras essentially differ by one central element.

In the present context, this element is nothing butP , the total momentum. Thus, the transition
between the twoW -algebras amounts to describing the system in its centre of mass frame.

6. Conclusions and outlook

We deliberately imposed the restriction that the coupling constantg be positive. Wheng
is negative, the quantum spectrum also contains bound states (solitons) and the asymptotic
scattering states

∏n
i=1 a

†i (λi)|0〉 are no longer complete in the Hilbert space of the NLS model.
Our construction relies crucially on the completeness of those states in order to identify the
generators of the Yangian symmetry (3.11) with the generators (4.7) and (4.10) expressed in
term of the ZF algebra elements.

In both regions of the coupling constant, the Yangian generators commute with the
scattering matrix and the Yangian corresponds to a symmetry of the scattering matrix. The
nuance is that in the second situation we have only defined the action of the Yangian generators
on the asymptotic scattering states and the best we can say about the operators (4.7) and (4.10)
is that they generate an asymptotic symmetry of the NLS model. Extending their definition to
the full Hilbert space would require complete knowledge of the bound states spectrum of the
NLS model, something not yet achieved.

From a more general point of view, when considering our construction as based solely on
the existence of a ZF algebra we may conclude that it is possible to realize a Yangian algebra
on the Fock space generated by the ZF algebra whenever theR-matrix is of the rational type
given in (2.15). For the NLS model, theS-matrix is invariant underSU(N) and the symmetry
algebra turns out to be a YangianY (sl(N)). Let us mention that theSU(N)-Thirring model
is another quantum system with such rationalR-matrix, thus providing a relativistic example
of a system with Yangian symmetry [14].

It would be interesting to exhibit the symmetry algebra of more general cases where
theR-matrix is not rational but is still invariant under some Lie group. As theR-matrix in
the ZF algebra can be interpreted as the two-bodyS-matrix of integrable systems in 1 + 1
dimensions, this question reduces to the problem of identifying the largestS-matrix symmetry
of such integrable systems. The study of this sort of relationship in a more general situation is
certainly interesting and we intend to return to it in a future paper.

The NLS model considered in the present work is defined on the line. Usually the presence
of boundaries strongly influences the symmetry and we are currently investigating this issue
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in the NLS model on the half line. Its quantification as a quantum field theory, as carried out
in [15], reveals the presence of a boundary exchange algebra generalizing the ZF algebra, thus
fitting well within the more general scheme of integrable systems with boundaries developed
in [16]. We still expect the system to possess a large internal symmetry, possibly in the form
of a twisted Yangian algebra [17] and we also expect to be able to express these symmetry
generators in terms of the boundary exchange algebra [18].
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Appendix A. Definition of Y (gl(N ))

The YangianY (gl(N)) can be defined as the free associative algebra overC with generators
1, t (n)ij , n > 0 (not to be confused withtak used elsewhere in the text) quotiented by the
relation [10]

RY (λ− µ) t (λ)⊗ t (µ) = t (µ)⊗ t (λ) RY (λ− µ) (A.1)

where we introduced theN ×N matrix t (λ) whose entries are formal series inλ

tij (λ) = δij + h
∞∑
n=0

t
(n)
ij

λn+1
(A.2)

and theR-matrix is given by

RY (λ− µ) = (λ− µ)Eij ⊗ Eji − hIN ⊗ IN . (A.3)

The non-zero deformation parameterh can be scaled away as two Yangians with different
non-zero deformation parameter are known to be isomorphic.

The quantum determinant

det
q
(t (λ)) =

∑
π∈SN

sign(π)t1,π(1)(λ−N + 1) . . . tN,π(N)(λ) (A.4)

generates the infinite-dimensional centreZ, and the YangianY (gl(N)) is isomorphic to
Z ⊗ Y (sl(N)).

The coproduct in this presentation is simply

1(tij (λ)) =
N∑
k=1

tik(λ)⊗ tkj (λ). (A.5)

In the main text, we use the notion of an evaluation representation. In thet
(n)
ij basis, it is defined

by the composition of the algebra homomorphism

tij (λ) = δij +
eij

λ
(A.6)

whereeij are the generators ofgl(N), with any representation ofgl(N). In particular, the
Yangian generatorst (n)ij with n > 1 act as zero operators.

Alternatively, the YangianY (sl(N)) can also be defined as the unique homogeneous
quantization ofsl(N)[u] (the polynomial maps from the complex plane tosl(N)) [19]. It is
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generated by the two sets of elementsQa
0 (a basis ofsl(N)) andQa

1 subject to the following
constraints:

[Qa
0,Q

b
n] = if abc Q

c
n

[Qa
1, [Q

b
0,Q

c
1]] + [Qb

1, [Q
c
0,Q

a
1]] + [Qc

1, [Q
a
0,Q

b
1]]

= h2f apdf
b
qxf

c
ryf

xy
eκ
des3(Q

p

0 ,Q
q

0,Q
r
0)

[[Qa
1,Q

b
1], [Qc

0,Q
d
1]] + [[Qc

1,Q
d
1], [Qa

0,Q
b
1]]

= h2(f apef
b
qxf

cd
yf

y
rzf

xz
g + f cpef

d
qxf

ab
yf

y
rzf

xz
g)κ

egs3(Q
p

0 ,Q
q

0,Q
r
1)

whereκab is the Killing form onsl(N) ands3(., ., .) is the totally symmetrized product of three
terms (normalized tos3(x, x, x) = x3).

The first presentation is helpful to identify the type of algebraic structure generated by
T̃ (λ) in (3.1). The second one is more convenient when explicitly constructing the Yangian
generators, as only two sets of elements are necessary to generate the whole YangianY (sl(N)).

Appendix B. Construction of Ja

To constructJ a, we heavily use the notation of internal spaces, which encodes bothsu(N)

indices and momenta. Recall also, that in this notation,Rji = R−1
ij . The key observation in

the construction ofJ a is that, due to the presence ofδij in (4.2), the commutator ofJ a(n) with

a
†
0 contains two contributions with different numbers of oscillators. For the simplest case of
n = 1 one has

[J a(1), a
†
0] = a†

0a
†
1(R01T

a
1 R10− T a1 )a1 + a†

0T
a
0 . (B.1)

Comparing with (4.3), the term with no annihilation operator completely fixesT a1 = ta1 . In
the commutator [J a, a†

0], the only other term with one annihilation operator comes from the
commutator [J a(2), a

†
0] and we defineT a12 so that these two contributions cancel. Repeating this

procedure for increasing number of oscillators uniquely determines the tensorsT a1...n.
In this appendix, we adopt a different point of view, namely we prove that the solution

given in (4.8) is indeed correct.
For genericn, one has

[J a(n), a
†
0] = a†

0a
†
1...n

(
R−1
n T

a
1...nRn − T a1...n

)
an...1 + a†

0a
†
1...n−1Bnan−1...1 (B.2)

where

Bn =
n∑
i=1

R−1
i−1T

a
1...n|iRi−1 (B.3)

Ri = Ri0 . . . R20R10 (B.4)

R−1
i = R01R02 . . . R0i . (B.5)

Here the notationT a1...n|i represents the indices substitutionsi → 0 andk→ k − 1 for k > i.
Then, we simplify the expression forBn:

Bn =
n∑
i=1

(
R−1
i−1

( i−1∑
k=1

αnk t
a
k + αni t

a
0 +

n−1∑
k=i

αnk+1t
a
k

)
Ri−1

)

=
n∑
i=1

( i−1∑
k=1

αnkR
−1
n−1t

a
kRn−1 + αni R

−1
i−1t

a
0Ri−1 +

n−1∑
k=i

αnk+1t
a
k

)
= R−1

n−1

( ∑
06k<i6n

αnk t
a
k

)
Rn−1 +

∑
16i6k6n−1

αnk+1t
a
k +Cn
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whereCn is defined as

Cn =
n∑
i=1

αni R
−1
i−1t

a
0Ri−1.

Next, performing the independent sums oni and using the properties

αnk =
n− 1

n− k α
n−1
k αnk+1 = −

n− 1

k
αn−1
k

one gets

Bn − Cn = R−1
n−1

n−1∑
k=1

(n− k)αnk takRn−1 +
n−1∑
k=1

k αnk+1t
a
k

= (n− 1)R−1
n−1

( n−1∑
k=1

αn−1
k tak

)
Rn−1− (n− 1)

n−1∑
k=1

αn−1
k+1 t

a
k

= (n− 1)R−1
n−1T

a
1...n−1Rn−1− (n− 1)T a1...n−1.

The simplification ofCn is achieved using thesl(N) invariance of theR-matrix, [R0k, t
a
0 +tak ] =

0, and the properties
n∑
i=1

αni = 0
n∑

i=k+1

αni = −αn−1
k

and leads to

Cn =
n∑
i=1

αni [R−1
i−1, t

a
0 ]Ri−1 +

n∑
i=1

αni t
a
0 =

n∑
i=1

αni

i−1∑
k=1

R−1
k−1[R0k, t

a
0 ]Rk

=
n−1∑
k=1

( n∑
i=k+1

αni

)
R−1
k−1[R0k, t

a
0 ]Rk =

n−1∑
k=1

αn−1
k R−1

k−1[R0k, t
a
k ]Rk

= R−1
n−1[T a1...n−1,Rn−1].

Finally, we get that

Bn = (Bn − Cn) +Cn = nR−1
n−1[T a1...n−1,Rn−1] (B.6)

so that the commutator (B.2) reduces to

[J a(n), a
†
0] = a†

01...nR
−1
n [T a1...n,Rn]an...1− na†

01...n−1R
−1
n−1[T a1...n−1,Rn−1]an−1...1.

Therefore, adjusting properly the coefficient ofJ a(n) as in (4.7), we obtain a complete
cancellation of all the terms but one, yielding precisely the required commutation relation
(4.3). The proof of (4.4) is similar.

Appendix C. Construction of Sa

We show thatSa is also of the form

Sa =
∞∑
n=1

(−)n+1

n!
a

†
1...nT̃

a
1...nan...1

and we determine the tensorT̃ a1...n directly from the commutation relations

Sa = − i

c2
f abc[S

b, J c] = − i

c2
f abc

∞∑
n=1

(−)n+1

n!
[Sb, J c(n)] (C.1)
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wheref abcf
bc
d = c2δ

a
d . We requireSa to satisfy (4.5) and (4.6) and consequently the right-

hand side of (C.1) evaluates to

[Sb, J c(n)] = [Sb, a†
1...n]T

c
1...nan...1 + a†

1...nT
c
1...n[S

b, an...1]

=
n∑
i=1

(a
†
1...i−1[Sb, a†

i ]a
†
i+1...nT

c
1...nan...1 + a†

1...nT
c
1...nan...i+1[S

b, ai ]ai−1...1)

=
n∑
i=1

(a
†
1...i−1µia

†
i t
b
i a

†
i+1...nT

c
1...nan...1− a†

1...nT
c
1...nan...i+1µit

b
i aiai−1...1)

+
ρg

2

n∑
i=1

f bde(a
†
1...i−1a

†
i t
d
i J

ea
†
i+1...nT

c
1...nan...1 + a†

1...nT
c
1...nan...i+1J

dtei aiai−1...1)

which shows that the solution we are looking for is

Sa = SaI + SaII
where

SaI = −
i

c2
f abc

∞∑
n=1

(−)n+1

n!
a

†
1...n

[ n∑
i=1

µit
b
i , T

c
1...n

]
an...1

SaII = −
iρg

2c2
f abc

∞∑
n=1

(−)n+1

n!
(C.2)

×
n∑
i=1

f bde(a
†
1...i t

d
i J

ea
†
i+1...nT

c
1...nan...1 + a†

1...nT
c
1...nan...i+1J

dtei ai...1).

These expressions can be simplified considerably. InSaI we introduce the known form of
T c1...n =

∑n
k=1 α

n
k t
c
k and with the definition of the second Casimir we get

if abc

[ n∑
i=1

µit
b
i , T

c
1...n

]
= −f abc

n∑
i=1

f bceµiα
n
i t
e
i = −c2

n∑
i=1

µiα
n
i t
a
i

so that

SaI =
∞∑
n=1

(−)n+1

n!
a

†
1...n

( n∑
i=1

µiα
n
i t
a
i

)
an...1. (C.3)

The next step is to simplify the contributionSaII . We shiftJ e, J d towardsT c using

[J e, a†
i+1...n] = a†

i+1...n

( n∑
j=i+1

t ej

)

[J d, an...i+1] = −
( n∑
j=i+1

tdj

)
an...i+1

and with the anti-symmetry off bde we get

SaII = −
iρg

2c2
f abc

∞∑
n=1

(−)n+1

n!

×
n∑
i=1

f bde

(
a

†
1...n

[ n∑
j=i+1

tdi t
e
j , T

c
1...n

]
an...1 + a†

1...n[t
d
i , T

c
1...n]J

ean...1

)
.

The second term is simplified using the commutator
n∑
i=1

[tdi , T
c
1...n] = if dcg T

g

1...n
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and the identity

f abcf
b
def

dc
g = −

c2

2
f aeg.

That same identity, combined with the explicit expression forT c1...n, helps to reduce the first
term to

f abcf
b
de

[ ∑
16i<j6n

tdi t
e
j ,

n∑
k=1

αnk t
c
k

]
= i

c2

2
f abc

∑
16i<j6n

(αni + αnj )t
b
i t
c
j .

Altogether, the expression we find forSaII is

SaII = −
ρg

4
f abc

∞∑
n=1

(−)n
n!

a
†
1...n

( ∑
16i<j6n

(αni + αnj )t
b
i t
c
j + T b1...nJ

c

)
an...1.

(C.4)

We can merge the two contributions to (C.4). We plug in the expansion (4.7) forJ c in the
second one and appropriately label the auxiliary spaces

∞∑
k=1

(−)k
k!

f abca
†
1...k T

b
1...kJ

cak...1

= f abc
∞∑
k=1

∞∑
l=1

(−)k+l+1

k!l!
a

†
1...ka

†
k+1...k+lT

b
1...kT

c
k+1...k+l ak+l...k+1ak...1

= f abc
∞∑
n=2

(−)n+1

n!
a

†
1...n

( n−1∑
k=1

(
n

k

)
T b1...kT

c
k+1...n

)
an...1

so that we get forSaII

SaII = −
ρg

2
f abc

∞∑
n=2

(−)n+1

n!
a

†
1...nT

bc
1...nan...1 (C.5)

where the new tensorT bc1...n is defined below and turns out to be surprisingly simple

T bc1...n = 1
2

( n−1∑
k=1

(
n

k

)
T b1...k T

c
k+1...n −

∑
16i<j6n

(αni + αnj ) t
b
i t
c
j

)

= 1
2

∑
16i<j6n

( j−1∑
k=i

(
n

k

)
αki α

n−k
j−k − αni − αnj

)
tbi t

c
j

= −
∑

16i<j6n
αnj t

b
i t
c
j .

In the last step, we have used the property (proved in the next section)

j−1∑
k=i

(
n

k

)
αki α

n−k
j−k − αni = −αnj . (C.6)

Putting togetherSaI andSaII , we get the final expression forSa

Sa =
∞∑
n=1

(−)n+1

n!
a

†
1...n

( n∑
i=1

µiα
n
i t
a
i +

ρg

2
f abc

∑
16i<j6n

αnj t
b
i t
c
j

)
an...1. (C.7)



Yangian symmetry in the NLS hierarchy 5899

The first few terms of this series are

Sa1 = a†
1µ1t

a
1a1

Sa2 = −
1

2
a

†
12

(
µ1t

a
1 − µ2t

a
2 −

ρg

2
f abct

b
1 t
c
2

)
a21

Sa3 =
1

6
a

†
123

(
µ1t

a
1 − 2µ2t

a
2 +µ3t

a
3 −

ρg

2
f abc(2t

b
1 t
c
2 − tb1 t c3 − tb2 t c3)

)
a321.

Recall that there is an implied integration onµi in these expressions.

Appendix C.1. Proof of the property (C.6)

We want to show that for 16 i < j 6 n we have

j−1∑
k=i

(
n

k

)
αki α

n−k
j−k − αni = −αnj .

It is equivalent to show thatf (m) = g(m) for m integer, where

f (m) =
m−1∑
k=0

(
n

k + i

)
αk+ii αn−k−im−k − αni

g(m) = −αni+m.
This is done by recursion. Obviously,f (1) = g(1) and we then show that df (m) ≡
f (m + 1)− f (m) and dg(m) ≡ g(m + 1)− g(m) are equal:

dg(m) = (−)i+m+1

(
n

i +m

)
while

df (m) =
m∑
k=0

(
n

k + i

)
αk+ii αn−k−im−k+1−

m−1∑
k=0

(
n

k + i

)
αk+ii αn−k−im−k

=
m−1∑
k=0

(−)i+m+k+1

(
n

k + i

)(
k + i − 1
i − 1

)
×
{(

n− k − i − 1
m− k

)
+

(
n− k − i − 1
m− k − 1

)}
+(−)i+1

(
n

m + i

)(
m + i − 1
i − 1

)
=

m−1∑
k=0

(−)i+m+k+1

(
n

k + i

)(
k + i − 1
i − 1

)(
n− k − i
m− k

)
+(−)i+1

(
n

m + i

)(
m + i − 1
i − 1

)
= (−)i+m+1

(
n

m + i

){
(i +m)!

(i − 1)!m!

m−1∑
k=0

(−)k
k + i

(
m

k

)
+ (−)m

(
m + i − 1
i − 1

)}

= (−)i+m+1

(
n

m + i

){
(i +m)!

(i − 1)!m!

m∑
k=0

(−)k
k + i

(
m

k

)}
≡ dg(m) {h(m)}.
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We need to show thath(m) = 1, which is implied by
m∑
k=0

(−)k
k + i

(
m

k

)
=

m∑
k=0

∫ 1

0
dx (−)kxk+i−1

(
m

k

)
=
∫ 1

0
dx xi−1

m∑
k=0

(
m

k

)
xk

=
∫ 1

0
dx xi−1(1− x)m = 0(i)0(m + 1)

0(m + i + 1)
.

This ends the proof.
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